

1: Numerical Methods – 1: (8 hours): Solution of polynomial and transcendental equations – Bisection method, Newton-Raphson and Regula-Falsi method. Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference e. Interpolation with unequal intervals: Newton's divided difference and Lagrange's formulae.

Algebraic and Transcendental equation: An equation of the form  $f(x) = a_0 x^n + a^1 x^{n-1} + \dots + an = 0$  is called an algebraic equation. An equation consisting trigonometric function, exponential function, logarithmic function etc. is called a transcendental equation. Solution of Algebraic and Transcendental equations:

| <b>Bisection Method:</b> |
|--------------------------|
|--------------------------|

- (i) Find the negative and positive values of the function at two different points ,
- (ii) Say f(a) = -Ve and f(b) = +ve (Then Root lies b/w a and b)
- (iii) Take  $a=x_0$  and  $b=x_1$
- (iv) Find  $x_2 = x_0 + x_1 / 2$
- (v) Find  $f(x_2)$
- (vi) If  $f(x_2) = +$  ve then root lies b/w  $a = x_0$  and  $x_2$
- If  $f(x_2) = -$  ve then root lies b/w  $b = x_1$  and  $x_2$ , repeat procedure from (iii)

**Q1.** Find the root of the equation  $x^3 - x - 4 = 0$  which lies between 1 and 2 by **Bisection Method.** [ANS:  $X_{10} = X_{11} = 1.79638$ ]

- **Q2.** Find a real root of the equation  $x \log_{10} x = 1.2$  by **Bisection Method**. [ANS:  $X_{12=} X_{13} = 2.714$ ] [MAY19]
- Q3. Find the root of the equation  $x^3 + x 1 = 0$  by Bisection Method, near 1 (up to 3 decimal places) [May 18]
- Q4. Find the root of the equation  $x^3 4x 9 = 0$  by **Bisection Method** correct to three decimal places. [June 16,Nov. 18 ME/CE]

#### Regula Falsi Method (Or Method of false positions)

1. find the negative and positive values of the function at two different points

**2.** say f(a) = -Ve and f(b) = +ve( Then Root lies b/w *a* and *b*)

3. let  $a=x_0$  and  $b=x_1$ Find  $x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$ 4. 5. find  $f(x_2)$ 6. If  $f(x_2) = +ve$  then root lies b/w  $a = x_0$  and  $x_2$ If  $f(x_2) = -ve$  then root lies b/w  $b=x_1$  and  $x_2$ , repeat procedure from (2) 7. **Q5.** Find the root of the equation  $x^3$ - 2x- 5 = 0 which lies between 2 and 3 by method of false position. [ANS:  $X_6=X_7=2.094$ ] [JUNE 2010, 17] Q6. Find the root of the equation  $x^3$ - 5x- 7 = 0 which lies between 2 and 3 by method of false position. ANS:  $X_3=X_4=2.7472$  [June2005, may 18] **Q7.** Find the root of the equation  $x^3 - 4x + 1 = 0$  by the method of **false position**. [ANS: X=0.25] RGPV JUNE 2007] **Q8.** Find the root of the equation  $x^3 + x^2 - 3X - 3 = 0$  by the method of **false position**. [ANS:  $X_3 = 1.728$ ] [RGPV JUNE 2005] **Q9.** Find a real root of the equation  $x \log_{10} x = 1.2$  by **Regula-falsi method**. [ANS: X<sub>3</sub>=2.74065][RGPV Dec. 07, JUNE 2009, June 16] **Q10.** Find a real root of the equation  $2X - log_{10}X = 7$  by **Regula-falsi method**. [ANS: X<sub>3</sub>=3.78928] RGPV JUNE 2005] Newton Rap son's Method: Find the negative and positive values of the function at two different points 1. 2. Say f(a) = -Ve and f(b) = +ve

3. If |f(a| < |f(b)|) (Numerical Value, without sign), then take  $a = x_0$ 

4. Find 
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, Provided  $f'(x_n)$  exist

5. Find net approximations using (2)

Q11. Find the real root of the equation  $x^4$ - x- 9 = 0 by Newton-Raphson method. [ANS:  $X_4$ =1.8134][RGPV JUNE 2006, June 16] Q12. Find the real root of the equation  $x^3$ - 3x+1 = 0 by Newton-Raphson method. [ANS:  $X_3$ =0.3473][RGPVDEC. 2009,2007] Q13. Find the real root of the equation  $x^3$ - 2x-5 = 0 by Newton-Raphson method. [ANS:  $X_4$ =2.09456][RGPV JUNE 2007] Q14. Find the real root of the equation  $3x = \cos x-1$  by Newton-Raphson method.

[ANS:  $X_2=0.6071$ ] [JUNE 2004,DEC.2006, Dec. 2002 June16may18 Nov. 18 ] Q15. Find the real root of the equation  $x^4$ - x- 10 = 0 by Newton-Raphson method. [ANS: X4=1.85558][JUNE 08,DEC.2003] Q16. Find a real root of the equation  $x \log_{10} x$  1.2 by Newton-Raphson method . Q17. Find a real root of the equation  $x \log_{10} x$  1.2 by Newton-Raphson method [ANS: X4=2.74065][RGPV FEB. 2010,DEC. 05] Q.17. Find a real root of the equation  $X \log_{10} x = 4.77$  by Newton-Raphson method . Q18. Find the real root of the equation  $x = e^{-x}$  by Newton-Raphson method. [RGPV may 19]

**O19.** Solve the algebraic equation  $x^3 + 2x^2 + 10x - 20 = 0$  by Newton-Raphson method.

[RGPV may 19] [RGPV may 19 Ex.]

Secant Method: This method is same as the Regula Falsi Method, but in this method we not need to check the +ve and -ve sign in each step. We can use general formula  $x_{n+2} = \frac{x_n f(x_{n+1}) - x_{n+1} f(x_n)}{f(x_{n+1}) - f(x_n)}$ 

Q20. Find the root of the equation  $x^3 - 2x - 5 = 0$  which lies between 2 and 3 by method of Secant . [ANS:  $X_6=X_7=2.094$ ] [RGPV JUNE 17] Q21. Find a root of  $cosx - xe^{x} = 0$  by using Secant or Chord Method. Ans:  $x_6 = x_7 = 0.5177$ [Dec.12, Nov 2018]

#### **Difference operators:**

- Shifting Operator: E f(x) = f(x+h),  $E^{2}f(x) = f(x+2h)$ , ...,  $E^{n}f(x) = f(x+nh)$ , or  $E y_{x} = y_{x+h}$ ,  $E^{n} y_{x} = f(x+h)$ 1.  $y_{x+nh}$ ,
- **2.** Forward difference operator:  $\Delta f(x) = f(x+h) f(x)$  or  $\Delta y_x = y_{x+h} y_x$
- **3.** Backward difference operator :  $\nabla f(x) = f(x) f(x-h)$  or  $\nabla y_x = y_x y_{x-h}$
- 4. Averaging operator :  $\mu f(x) = \frac{f(x+\frac{h}{2}) + f(x-\frac{h}{2})}{2}$  $\mu = (E^{1/2} + E^{-1/2})/2$  $\delta = E^{1/2} - E^{-1/2}$ 5. Central difference operator  $= \delta f(x) = f(x + \frac{h}{2}) - f(x - \frac{h}{2})$ 6.  $E=e^{hD}$  [Hint : use Taylor Series  $f(x+h) = f(x) + h f'(x) + h^2/2 f''(x)$ ...... Then we get  $Ef(x) = e^{hD}f(x)$ ] Q.1 Prove (i)  $\Delta^2(3e^x) = 3(e^h - 1)^2 e^x$  (ii)  $\Delta^2(\cos 2x) = -4\sin^2 h \cos(2x + 2h)$

(iii) 
$$\Delta(e^{ax} \cdot \log bx) = e^{ax} \left[ e^{ah} \log(\frac{x+h}{x}) + (e^{ah} - 1)\log bx \right] (iv) \quad \Delta \tan^{-1} x = \tan^{-1} \left\lfloor \frac{h}{1+hx+x^2} \right\rfloor$$

**Q.2** Prove (i) hD=-log(1- $\nabla$ ) (ii) hD = log(1+ $\Delta$ ) (iii) hD= sin h<sup>-1</sup>(µ $\delta$ )

Q.3 Prove that (1)  $e^x = (\frac{\Delta^2}{E})e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$  [Dec. 2015, June 2014, Feb. 2010, June 2009, 2008, 2007, Dec. 2006, 2004, June 2002]

**Q.4** Prove (i) 
$$\Delta = \frac{\delta^2}{2} + \delta \sqrt{1 + \frac{\delta^2}{4}}$$
 (ii)  $\mu \delta = \frac{1}{2} (\Delta + \nabla)$  (iii)  $(1 + \nabla)(1 + \Delta) = 1$  (iv)  $E\nabla = \nabla E = \Delta$  (v)  $\nabla = \delta E^{-1/2}$  (vi)  $\delta^2 = \nabla \Delta = \Delta - \nabla$ 

**Q.5** Prove that 
$$(E^{\frac{1}{2}} + E^{-\frac{1}{2}})(1 + \Delta)^{\frac{1}{2}} = 2 + \Delta$$
  
**Q.6** Prove that hD= log  $(1+\Delta)$ = -log $(1-\nabla)$  =sinh<sup>-1</sup>( $\mu\delta$ )

[RGPV: June 2009, Dec. 2005] [RGPV: Dec. 2005]

 $\Delta = E - I$  $\nabla = l \cdot E^{-1}$ 

**Find Missing Terms**: If there are n missing terms/ data in the given table then  $\Delta^{n-1} y_x = 0$  or  $\Delta^{n-1} f(x) = 0$ , use  $\Delta = E$ -1and and expand the series using binomial theorem  $(a+b)^n = {}^n C_0 a^n + {}^n C_1 a^{n-1} b^1 + {}^n C_2 a^{n-2} b^2 + {}^n C_3 a^{n-3} b^3 + \dots + {}^n C_n a^{n-n} b^n$ 

Or  $(a+b)^n = a^n + na^{n-1}b^1 + \frac{n(n-1)}{2}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3}a^{n-3}b^3 + \dots + b^n$  $\mathbf{i.e} \quad (E-1)^5 y_x = \left( E^5 + 5E^4(-1)^1 + \frac{5.(5-1)}{2}E^3(-1)^2 + \frac{5.(5-1)(5-2)}{3}E^2(-1)^3 + \frac{5.(5-1)(5-2)(5-3)}{4}E^1(-1)^4 + \frac{5.(5-1)(5-2)(5-3)(5-4)}{5}E^0(-1)^5 \right) y_x = 0$ or  $y_{x+5} - 5y_{x+4} + 10y_{x+3} - 20y_{x+2} + 10y_{x+1} - y_x = 0$  (Since  $E^n y_x = y_{x+n}$ ), Put x= 0,1..... and solve the algebraic eq.s

| <b>Q.7</b> Find the missing term:     | x:<br>f(x): | 0       | 12<br>39 | 3<br>?  | 4<br>81  | <b>Ans:</b> 31 , <b>[RGPV:</b>             | Dec. 2002]                                    |
|---------------------------------------|-------------|---------|----------|---------|----------|--------------------------------------------|-----------------------------------------------|
| <b>Q.8</b> Find the first term of the |             |         |          |         |          | 1                                          | - , -                                         |
| <b>Q.9</b> Find the missing terms:    | x: f(x):    | 45<br>3 | 50<br>?  | 55<br>2 | 60<br>?  | 65<br>-2.4 <b>Ans:</b> f(60)=0.225,f(50)=2 | 2.925 [RGPV: June 2007]                       |
| Q.10 Find the missing terms:          | x: f(x):    | 0<br>6  | 5<br>10  | 10<br>? | 15<br>17 | .0       .25         .?       .31          | 13.25,f(20)=22.5 [RGPV: June 2006, June 2015] |

Practice Set : By Prof. Akhilesh Jain , Department of Mathematics, CIST , Bhopal (akhiljain2929@gmail.com): 9630451272(2)

 Q.11 Find the missing terms:
 x: 2 2.1 2.2 2.3 2.4 2.5 2.6<br/>f(x): 0.135 - 0.111 0.100 - 0.082 0.074 Ans: f(2.1)=0.123,f(2.4)=0.0904 [ June 2004]

 Q.12 Assuming the following values of y belong to the polynomial of degree 4 & compute the next three values.
 x: 0 1 2 3 4 5 6 7<br/>y: 1 -1 1 -1 1 ? ? ? ? Ans: 31,129,351 [RGPV. Dec. 2004]

 Q.13 Find the first term of the series whose second and sub sequent terms are 8,3,0,-1,0.
 Exectorial Polynomials: The factorial polynomial is the continued product of the factors in which the first factor is x and the

**Factorial Polynomials:** The factorial polynomial is the continued product of the factors in which the first factor is *x* and the successive factors decrease by a constant h and is denoted by  $x^{(n)}$ . Where  $x^{(n)} = x(x-h)(x-2h)....\{x-(n-1)h\}$ i.e.  $x^{(1)}=x$ ,  $x^{(2)} = x(x-1)$ ,  $x^{(3)}=x(x-1)(x-2)...$ 

$$\Delta x^{(n)} = nx^{(n-1)}, \ \Delta^2 x^{(n)} = n(n-1)x^{(n-2)} \dots \text{ and } \frac{1}{\Delta}x^{(n)} = \frac{x^{(n+1)}}{n+1}, \ \frac{1}{\Delta^2}x^{(n)} = \iint x^{(n)}dx = \frac{x^{(n+2)}}{(n+1)(n+2)}$$

Q.14 Express the following function  $2x^3 - 3x^2 + 3x - 10$  in in a factorial Notations and hence show that  $\Delta^3 y = 12$ . Ans:  $f(x) = 2x^{(3)} + 5x^{(2)} + 2x^{(1)} - 10$  [RGPV: June 2007, Dec. 2006, June 16]

Solution : use synthetic subdivision method :

| 0                | 2 | -3     | 3              | -10     |
|------------------|---|--------|----------------|---------|
| add <sub>√</sub> | 0 | 0 *2=0 | <b>∕-3*0=0</b> | / 3*0=0 |
| $\square$        | 2 | ×      | 3              | -10     |
| 1                |   | 1*2=2  | -1*1=-1        |         |
| 2                | 2 | -1     | 2              |         |
|                  | 0 | 3*2=6  |                |         |
| 3                | 2 | 5      |                |         |
|                  | 0 |        |                |         |
|                  | 2 |        |                |         |

Hence polynomial will be :  $f(x) = 2x^{(3)} + 5x^{(2)} + 2x^{(1)} - 10$ 

Q.15 Express  $y = x^4 - 12x^3 + 24x^2 - 30x + 9$  in a factorial and hence show that  $\Delta^4 y = 24$ Ans:  $f(x) = x^{(4)} - 6x^{(3)} - 5x^{(2)} - 17x + 9$  [RGPV: June 2004] Obtain the function whose first difference is  $2x^3 + 3x^2 - 5x + 4$  Ans:  $\frac{1}{2}(x^4 - 7x^2 + 14x + C)$  [Feb. 2010, Dec. 2007] Q.16 Obtain the function whose first difference is  $9x^2 + 11x + 5$  Ans:  $3x^3 + x^2 + x + d$  [RGPV: Dec. 2004, June 2015]

### **INTERPOLATION:**

Interpolation is the process to find the values of y for any intermediate value of x between the interval. Extrapolation is the process to find the values of y for any value of x outside the interval.

Interpolation with equal intervals:

Gregory- Newton's Forward difference interpolation formula: When required value of y=f(x) is near to the top then use forward difference interpolation formulae.  $y = f(x) = y_0 + \frac{p}{1!} \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \dots + \frac{p(p-1)\dots(p-(p-1))}{n!} \Delta^n y_0 \dots + \left| Where \ p = \frac{(x-x_0)}{h} \right|$ Q.17 Find the number of men getting wage Rs 10 from the following: Wages in Rs. 15 25 35 Ans: 5 9 No. of Men 30 35 42 22.625 Q.18 Prepare the difference table for the following [June 2015] 10 20 30 40 50 12 15 20 27 39 v Q.19 Estimate from the following table the number of students who obtained marks between 40 and 45: 30-40 40-50 50-60 60-70 70-80 Marks [June 2001, June 2015] No. of Students 31 42 51 35 31

Practice Set : By Prof. Akhilesh Jain , Department of Mathematics, CIST , Bhopal (akhiljain2929@gmail.com): 9630451272(3)

[*Hint: Convert the table in below form and add frequencies to get cumulative frequencies* ( y ) .**Ans:48 nearly**] **Q.20** Find the cubic polynomial which takes the following value , a Hence or otherwise evaluate y(4)

x: 0 1 2 3  

$$f(x)$$
: 1 2 1 10  
Ans:  $2x^3 - 7x^2 + 6x + 1$ , y(4)=4, [RGPV: Feb. 10, June 2010, Dec. 2014]

Q.21 Use Newton's forward interpolation formula, find the cubic polynomial and hence evaluate f(0.5) by the following data:

| x | 0  | 1 | 2  | 3  | 4   | Ans:  |
|---|----|---|----|----|-----|-------|
| у | -1 | 0 | 13 | 50 | 123 | -1.25 |
|   |    |   |    |    |     |       |

**Q.22** The following table gives the population of a town during the last six censuses. Estimate using any suitable interpolation formula the increase in the population during the period from 1946 to 1948.

x: 1911 1921 1931 1941 1951 1961

f(x): 12 15 20 27 39 52 Ans: f(1946)=32.3437, f(1948)=34.873215, Difference=2.53 [June 2003]

**Q.23** The following table gives the velocity v of a particle at time t, find the distance moved by the particle in 12 seconds and also find the acceleration at t=2.

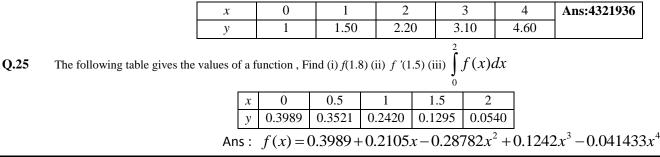
*t* (Sec.): 0 2 4 6 8 10 12 *v*(*m*/sec.): 4 6 16 34 60 94 136 *Ans:*  $v=t^2-t+4$ , *Distance* =552 *m*, *Acc.*=3 *m*/sec<sup>2</sup> [ Dec. 2002, Feb. 2010]

### 2. Gregory- Newton's Backward difference interpolation formula:

[When required value of y=f(x) is near to the bottom i.e.  $x_n$ , then use backward difference interpolation formulae. It is also used for extrapolating values of y for x, when x is slightly grater than  $x_n$ :

$$y = f(x) = y_n + \frac{p}{1!} \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \dots + \frac{p(p+1)\dots(p+(p-1))}{n!} \nabla^n y_n \dots + \left[ Where \ p = \frac{(x-x_n)}{h} \right]$$

Q.24 From the following table , evaluate f(3.8) using Newton backward interpolation formulae:



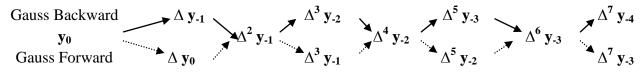
**Central difference interpolation formulas:** [When required value of y=f(x) is near to the middle, then use central difference interpolation formulae.]

1. Gauss forward difference interpolation formula:

$$y = f(x) = y_0 + \frac{p}{1!} \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^3 y_{-2} + \dots \dots \dots (0$$

2. Gauss Backward difference interpolation formula:

$$y = f(x) = y_0 + \frac{p}{1!} \Delta y_{-1} + \frac{(p+1)p}{2!} \Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^3 y_{-2} + \dots \dots \dots (-1$$



3. Sterling Formula: { Sterling formula is the mean of gauss forward and back ward formula}

$$y = f(x) = y_0 + \frac{p}{1!} \left(\frac{\Delta y_0 + \Delta y_{-1}}{2}\right) + \frac{p^2}{2!} \Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!} \left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2}\right) + \frac{p^2(p^2-1)}{4!} \Delta^4 y_{-2} \dots, \left(\frac{-1}{4}$$

4. Bessel's Formula :{Shift the origin to 1 by replacing p by (p-1) & add 1 to each argument 0,-1,-2...in gauss backward formulas and , take mean of gauss forward formula and revised backward formula}

$$y = f(x) = y_{x} + \frac{p}{11} \Delta y_{x} + \frac{p(p-1)}{21} \left(\frac{x^{1}y_{x} + x^{2}y_{x}}{2}\right) + \frac{p(p-1)(p-1)}{3!} \Delta^{1}y_{x} + \frac{(p+1)p(p-1)(p-2)}{4!} \left(\frac{x^{1}y_{x} + x^{1}y_{x}}{2}\right) + ...., \left(\frac{1}{4} 
**Q.25** Use Siriling formulae to find y for x-35 from the following table:  
**Q.26** Given that sinds<sup>4</sup> = 0.707.1, sind <sup>2-1</sup> = 0.660, sind <sup>5-1</sup> = 0.08660 If sind <sup>2-1</sup> = 0.086$$

| x : | 10 | 12 | 14 | 16 | 18 | 20 |          |             |
|-----|----|----|----|----|----|----|----------|-------------|
|     |    |    |    |    |    |    | Ans:1295 | [RGPV, Dec. |

 $f\left(x\right){:}\ 2420\ 1942\ 1497\ 1109\ 790\ 540$ 

Ans:1295 ,

[RGPV. Dec. 2010]

**Q.36** Apply Lagrange's method to find the values of x when y = 13 from the Given data

|   | x:   |   | 30 |    | 35                    |     | 40 |   | 45 |  |
|---|------|---|----|----|-----------------------|-----|----|---|----|--|
| f | (x): |   | 15 |    | 14                    |     | 17 |   | 16 |  |
|   |      | • | .1 | 1. | <b>C</b> <sup>1</sup> | 1.1 | 1  | C | 1  |  |

Q.37 Apply Lagrange's method to find the values of x when y = 15 from the Given data

| <i>x:</i> | 5  | 6  | 9  | 11 |
|-----------|----|----|----|----|
| f(x):     | 12 | 13 | 14 | 16 |

[June 16]